By Topic

Cool-Fetch: Compiler-Enabled Power-Aware Fetch Throttling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

In this paper, we present an architecturecompiIer based approach to reduce energy consumption inthe processor. While we mainly target the fetch unit, an importantside-effect of our approach i s that we obtain energysavings in many other parts in the processor. The expIanationis that the fetch unit often runs substantiaIly ahead ofexecution, bringing in instructions to different stages in theprocessor that may never be executed. We have found, thatalthough the degree of Instruction Level Parallelism (ILP)of a program tends to vary over time, it can be staticallypredicted by the compiler with considerable accuracy. OurInstructions Per Clock (IPC) prediction scheme is using adependence-testing-based analysis and simple heuristics, toguide a front-end fetch-throttling mechanism. We developthe necessary architecture support and include its poweroverhead. We perform experiments over a wide number ofarchitectural configurations, using SPEC2000 applications.Our results are very encouraging: we obtain up to 15%total energy savings in the processor with generalIy littleperformance degradation. In fact, in some cases our intelligentthrottling scheme even tszcwases performance.Keywords- Low power design, compiler architecture interaction,instruction Ievel parallelism, fetch-throttling

Published in:

Computer Architecture Letters  (Volume:1 ,  Issue: 1 )