System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

High-Throughput Multicast Routing Metrics in Wireless Mesh Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Roy, S. ; Purdue University, West Lafayette, IN ; Koutsonikolas, D. ; Das, S. ; Hu, Y.C.

The stationary nature of nodes in a mesh network has shifted the main design goal of routing protocols from maintaining connectivity between source and destination nodes to finding high-throughput paths between them. In recent years, numerous link-quality-based routing metrics have been proposed for choosing high-throughput paths for unicast protocols. In this paper we study routing metrics for high-throughput tree or mesh construction in multicast protocols. We show that there is a fundamental difference between unicast and multicast routing in how data packets are transmitted at the link layer, and accordingly there is a difference in how the routing metrics for each of these primitives are designed. We adapt certain routing metrics for unicast for high-throughput multicast routing and propose news ones not previously used for high-throughput. We then study the performance improvement achieved by using different link-quality-based routing metrics via extensive simulation and experiments on a mesh network testbed, using ODMRP as a representative multicast protocol. Our testbed experiment results show that ODMRP enhanced with linkquality routing metrics can achieve up to 17.5% throughput improvement as compared to the original ODMRP.

Published in:

Distributed Computing Systems, 2006. ICDCS 2006. 26th IEEE International Conference on

Date of Conference: