Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

ParRescue: Scalable Parallel Algorithm and Implementation for Biclustering over Large Distributed Datasets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jianhong Zhou ; University of Illinois at Chicago ; Khokhar, A.

Biclustering refers to simultaneously capturing correlations present among subsets of attributes (columns) and records (rows). It is widely used in data mining applications including biological data analysis, financial forecasting, and text mining. Biclustering algorithms are significantly more complex compared to the classical one dimensional clustering techniques, particularly those requiring multiple computing platforms for large and distributed data sets. In this paper, we develop an efficient scalable algorithm, referred to as ParRescue(Parallel Residue Co-clustering), that is capable of performing biclustering on extremely large or geographically distributed data sets. ParRescue divides the cluster tasks among processors with minimal communication costs thus making it scalable over large number of computing nodes. The proposed implementation is based on an existing sequential approach that has been modified for amenable parallel implementation. The proposed Par- Rescue algorithm has been implemented using MPI and the performance results are reported based on executions on a 64 node Linux PC cluster connected over 100 Mbits links. The experimental results show scalable performance with near linear speedups across different data and machine sizes compared to the modified sequential algorithm.

Published in:

Distributed Computing Systems, 2006. ICDCS 2006. 26th IEEE International Conference on

Date of Conference:

2006