By Topic

3D Object Reconstruction Using Geometric Computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Igwe, P.C. ; Univ. of Western Ontario, London, Ont. ; Knopf, G.K.

Fragmented objects are encountered in a variety of diverse engineering and scientific fields including industrial inspection, customized medical prosthesis design, forensic science, paleontology, and archaeology. The arbitrarily broken pieces must be reassembled and new material often added to complete the process of shape reconstruction. To prevent physical damage of the pieces during reconstruction and enhance shape visualization scientists have begun to exploit 3D data acquisition and graphical modeling tools. An algorithm for enabling free-form shape reconstruction from digitized data of fragmented pieces is described in this paper. The method exploits the topological structure and learning algorithm of a 3D self-organizing feature map (SOFM). The lattice of the SOFM is a spherical mesh that maintains the relative connectivity of the neighboring nodes as it transforms under external forces. The weight nodes of the lattice represent vertices of the constituent elements in the facetted surface model. The technique is illustrated by reconstructing two clay objects with closed geometries from several fragmented parts

Published in:

Geometric Modeling and Imaging--New Trends, 2006

Date of Conference:

16-18 Aug. 1993