Cart (Loading....) | Create Account
Close category search window

Optimization of Fabrication Process for a PDMS-SOG-Silicon Based PCR Micro Chip through System Identification Techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Korampally, V. ; Dept. of Electr. Eng., Missouri Univ., Columbia, MO ; Bhattacharya, Shantanu ; Yuanfang Gao ; Grant, S.A.
more authors

A polymerase chain reaction (PCR) micro-chip with integrated thin film heaters and temperature detectors has been realized on a silicon-SOG-PDMS (poly-di(methyl) siloxane) platform. Accurate temperature sensing and control is important for a PCR reaction. This precludes the placement of the temperature sensor anywhere else but within the PCR chamber which can, in certain microchip designs complicate the fabrication methodology. This paper presents the design and optimal placement of a thin film resistance based temperature detector (RTD) for sensing of temperature response on the bottom of the chip (heater side) and predicting the temperature response on the top of the chip (PCR chamber side). Thermal modeling of the system has been performed using a parametric black-box approach based on the input-output data. From the steady state response of the system, pseudo random binary sequences (PRBS) have been generated and used to excite it. Second and fourth order ARX (auto regressive with exogenous inputs) models have been derived for optimal control and their performances have been compared. Reduction of fabrication complexity in regards to optimal placement of temperature sensor has been proposed

Published in:

Computer-Based Medical Systems, 2006. CBMS 2006. 19th IEEE International Symposium on

Date of Conference:

0-0 0

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.