Cart (Loading....) | Create Account
Close category search window
 

Design and performance evaluation of subsynchronous damping controller with STATCOM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Padiyar, K.R. ; Dept. of Electr. Eng., Indian Inst. of Sci., Bangalore, India ; Prabhu, N.

A long transmission line needs controllable series as well as shunt compensation for power flow control and voltage regulation. This can be achieved by suitable combination of passive elements and active FACTS controllers. In this paper, series passive compensation and shunt active compensation provided by a static synchronous compensator (STATCOM) connected at the electrical center of the transmission line are considered. It is possible to damp subsynchronous resonance (SSR) caused by series capacitors with the help of an auxiliary subsynchronous damping controller (SSDC) on STATCOM. The objective of this paper is to investigate the SSR characteristics of the system and propose a new design procedure for SSDC based on nonlinear optimization to meet the specifications on the damping torque in the range of critical torsional frequencies. The SSDC uses the Thevenin voltage signal to modulate the reactive current reference of STATCOM. The Thevenin voltage signal is derived from the locally available STATCOM bus voltage and reactive current signals. The STATCOM configurations considered in this paper are 12 pulse, two- and three-level voltage source converter with Type-2 and Type-1 control, respectively. The controller regulates either reactive current (supplied by the STATCOM) or the bus voltage. The 3-phase model of the STATCOM is based on switching functions. By neglecting harmonics in the switching function, D-Q model is derived which is combined with similar models of the other system components for linear analysis. The results of the linear analysis are validated by carrying out transient simulation based on the detailed nonlinear models. The study is performed on the system adapted from the IEEE First Benchmark Model.

Published in:

Power Delivery, IEEE Transactions on  (Volume:21 ,  Issue: 3 )

Date of Publication:

July 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.