By Topic

A series multiresolution morphological gradient-based criterion to identify CT saturation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xiangning Lin ; Huazhong Univ. of Sci. & Technol., Hubei, China ; Li Zou ; Qing Tian ; Hanli Weng
more authors

The differential relay possibly mal-operate due to the inconsistent transforming characteristics of current transformers (CTs) when experiencing heavy through fault. According to the investigation of CTs of differential protection, the time interval between the occurrence of differential current and the sudden change of phase current can be utilized to distinguish between the external faults and the internal faults. A new CT saturation-blocking scheme for differential protections, which aims at identifying this time interval by virtue of series multiresolution morphological gradient (SMMG) is proposed. Using the excellent singularity detecting together with the noise-repressing abilities of SMMG, this time interval can be identified in real time with high accuracy. The EMTDC-based simulation results show that the scheme can effectively prevent the differential protection from mal-operating meanwhile guarantee the high-speed response to the internal fault.

Published in:

Power Delivery, IEEE Transactions on  (Volume:21 ,  Issue: 3 )