By Topic

Phantom assessment of new acquisition geometries for breast pinhole SPECT imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Bobkov, K.V. ; Duke Univ. Med. Center, Durham, NC, USA ; Bowsher, J.E. ; Greer, K.L. ; Jaszczak, R.J.
more authors

Breast SPECT imaging with pinhole collimation provides high resolution and sensitivity when the pinhole aperture is in close proximity to the breast. In this study we used clinical count density scans to analyze quantitatively the effects of three acquisition geometries. A Trionix clinical scanner was used with rotation range limited to 180 degrees to simulat the presence of a torso. An isolated breast phantom containing two spherical lesions was mounted on a tiltable platform attached to the patient bed. The orbits were: A) single half-circular orbit (single HCO); B) three parallel half circles separated axially (triple parallel HCO); and C) three half circles with the plane of rotation for two half circles tilted +30 and -30 degrees relative to the middle (triple tilted HCO). Multiple scans were taken for all orbits to perform statistical analysis. ML-EM was used for reconstruction. Our analysis shows that for the central lesion, orbits "B" and "C" yield 31% and 28% higher peak contrast than orbit "A". For the edge lesion, orbit "C" gives a 55% higher peak contrast than "A" and 70% higher than "B". Signal-to-noise ratios are dependent on the lesion location. The contrast analysis suggests that triple half-circular orbits are superior to the single half-circular orbit, especially, when two of the circles are tilted so that a larger part of the breast volume stays in the field of view during acquisition.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:53 ,  Issue: 3 )