Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at onlinesupport@ieee.org. We apologize for any inconvenience.
By Topic

A new scintillating fiber dosimeter using a single optical fiber and a CCD camera

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Frelin, A.-M. ; Lab. de Phys. Corpusculaire de Caen, France ; Fontbonne, J.-M. ; Ban, G. ; Batalla, A.
more authors

Radiotherapy treatments become more and more accurate, using very small irradiation fields and complex dose depositions. So small dosimeters for real time and in vivo dosimetry, suitable for photons as well as for electrons beams are highly desired. In this context, a scintillating fiber dosimeter (SFD) has been developed by the Laboratoire de Physique Corpusculaire de Caen (LPC Caen), France, in collaboration with one of the French regional center for cancer treatment Centre Regional de lutte contre le cancer F. Baclesse (CRLCC F. Baclesse), Caen, France, and the ELDIM Company, Herouville, France. This plastic dosimeter is water equivalent, and it is suitable for photons as well as for electrons beams without correction. It is a real time dosimeter, with an excellent signal to noise ratio, and a spatial resolution of about a few millimeters. The aim of this study was to reduce the size of the scintillator in order to improve the spatial resolution of this dosimeter. So, a new light collection device has been developed to reduce the length of the scintillator from 1 cm to 1 mm without loss in the signal to noise ratio. The accuracy of this improved prototype has been tested by comparison with standard ionization chambers and the difference between the two devices never exceeded one percent for photon and for electron irradiation beams. A first set of commercial SFD is under completion at ELDIM and it will be soon clinically tested in several French centers for cancer treatment.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:53 ,  Issue: 3 )