By Topic

Multidimensional signal processing and detection for storage systems with data-dependent transition noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pighi, R. ; Universita degli Studi di Parma, Italy ; Raheli, R. ; Amadei, U.

In the last decade, significant research on detection algorithms capable of mitigating the effects of colored Gaussian thermal noise and transition noise in storage systems, has been performed. In this paper, we present a new detection scheme based on a multidimensional detector front end and multidimensional linear prediction, applied to maximum a posteriori probability (MAP) sequence detection. This method improves the bit-error-rate (BER) performance with respect to previous approaches and makes the detector quite insensitive to transition noise. We show that the gain in terms of BER versus signal-to-noise ratio with our detector increases with the user density. The results obtained for a magnetic storage channel are extendable to optical storage systems as well.

Published in:

Magnetics, IEEE Transactions on  (Volume:42 ,  Issue: 7 )