By Topic

Motion-compensated and gated cone beam filtered back-projection for 3-D rotational X-ray angiography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Schafer, D. ; Philips Res. Lab., Hamburg ; Borgert, J. ; Rasche, V. ; Grass, M.

This paper presents a method to reconstruct moving objects from cone beam X-ray projections acquired during a single rotational run using a given motion vector field. The method is applicable to voxel driven cone-beam filtered back-projection reconstruction approaches. Here, a formulation based on the algorithm of Feldkamp, Davis, and Kress (FDK) is presented. The motion correction is applied during the back-projection step by shifting the voxel to be reconstructed according to the motion vector field. The method is applied to three-dimensional (3-D) rotational X-ray angiography. Projections from a beating coronary heart phantom are simulated. Motion-compensated reconstructions with varying accuracy of the applied motion field are carried out for a late diastolic heart phase and compared to the reconstruction obtained with the standard FDK-method from projections of the corresponding motion-free model in the same heart phase. Furthermore, gated reconstructions are calculated by weighting the projections according to their cardiac phase without using a motion vector field. Different gating window widths are applied, and the reconstructions are compared. Using the correct motion field with the motion-compensated reconstruction, the image quality of the standard reconstruction from the corresponding motion-free coronary model can almost be recovered. The reconstructed image quality stays acceptable if the accuracy of the motion field sampling points is better than 1 mm. The gated reconstructions with a window width of 15%-20% of the cardiac cycle lead to superior results compared to nearest neighbor gating, especially for histogram based visualization and analysis. The motion-compensated reconstructions provide sharp images of the coronaries far surpassing the image quality of gated reconstructions

Published in:

Medical Imaging, IEEE Transactions on  (Volume:25 ,  Issue: 7 )