Cart (Loading....) | Create Account
Close category search window

Output Tracking via Sliding Modes in Causal Systems with Time Delay Modeled by Higher Order Pade Approximations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kosiba, E.A. ; Dept. of Electr. Eng., Alabama Univ., Huntsville, AL ; Gang Liu ; Shtessel, Y.B. ; Zinober, A.S.I.

Output tracking in a SISO causal uncertain nonlinear system with an output subject to a time delay is considered using sliding mode control. A higher order Pade approximation to a delay function with a known time delay is used to construct a model of a transformed system without a time delayed output and is employed in a feedback sliding mode control. This model functions as a predictor of the plant states and the plant output, but is of nonminimum phase due to the application of the Pade approximation. The method of the stable system center is used to stabilize the internal dynamics of this plant model, and a control is developed using a sliding surface to allow the plant to track an arbitrary reference profile given by an exogenous system with a known characteristic equation. Simulations of the system are performed for the plant model using a first, second and third order Pade approximations and a controller in plant feedback mode. Numerical examples for Pade approximations of increasing order are considered and compared

Published in:

Variable Structure Systems, 2006. VSS'06. International Workshop on

Date of Conference:

5-7 June 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.