By Topic

Comparison Between Simulated and Experimental Thermal Resistances of Power Devices Using an Specific Test Chip

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Jorda, X. ; Centre Nacional de Microelectron., Cerdanyola del Valles ; Vellvehi, M. ; Madrid, F. ; Galvez, J.L.
more authors

Thermal simulation is nowadays the basic thermal management design tool to predict temperature distributions and power fluxes of complex assemblies. Nevertheless, the simulation results can be inaccurate due to the uncertainty of the values of the parameters involved in the modelisation, as it is the case of the dielectric layer of the IMS substrates. We propose a methodology for the in-situ measurement of the thermal conductivity of this dielectric layer. Two typical power assembly structures based on two types of substrates and a thermal assessment chip, have been simulated and their thermal resistance deduced. The corresponding experimental results have validated the simulations and, consequently, the thermal conductivity extraction method proposed

Published in:

Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, 2006. EuroSime 2006. 7th International Conference on

Date of Conference:

24-26 April 2006