By Topic

MIMO communications in ad hoc networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Biao Chen ; Dept. of Electr. Eng. & Comput. Sci., Syracuse Univ. Syracuse, NY ; Gans, M.J.

We study in this paper the network spectral efficiency of a multiple-input multiple-output (MIMO) ad hoc network with K simultaneous communicating transmitter-receiver pairs. Assuming that each transmitter is equipped with t antennas and each receiver with r antennas and each receiver implements single-user detection, we show that in the absence of channel state information (CSI) at the transmitters, the asymptotic network spectral efficiency is limited by r nats/s/Hz as Krarrinfin and is independent of t and the transmit power. With CSI corresponding to the intended receiver available at the transmitter, we demonstrate that the asymptotic spectral efficiency is at least t+r+2radictr nats/s/Hz. Asymptotically optimum signaling is also derived under the same CSI assumption, i.e., each transmitter knows the channel corresponding to its desired receiver only. Further capacity improvement is possible with stronger CSI assumption; we demonstrate this using a heuristic interference suppression transmit beamforming approach. The conventional orthogonal transmission approach is also analyzed. In particular, we show that with idealized medium access control, the channelized transmission has unbounded asymptotic spectral efficiency under the constant per-user power constraint. The impact of different power constraints on the asymptotic spectral efficiency is also carefully examined. Finally, numerical examples are given that confirm our analysis

Published in:

Signal Processing, IEEE Transactions on  (Volume:54 ,  Issue: 7 )