Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Nonideal sampling and interpolation from noisy observations in shift-invariant spaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Eldar, Y.C. ; Biomed. Imaging Group, Ecole Polytechnique Fed. de Lausanne ; Unser, M.

Digital analysis and processing of signals inherently relies on the existence of methods for reconstructing a continuous-time signal from a sequence of corrupted discrete-time samples. In this paper, a general formulation of this problem is developed that treats the interpolation problem from ideal, noisy samples, and the deconvolution problem in which the signal is filtered prior to sampling, in a unified way. The signal reconstruction is performed in a shift-invariant subspace spanned by the integer shifts of a generating function, where the expansion coefficients are obtained by processing the noisy samples with a digital correction filter. Several alternative approaches to designing the correction filter are suggested, which differ in their assumptions on the signal and noise. The classical deconvolution solutions (least-squares, Tikhonov, and Wiener) are adapted to our particular situation, and new methods that are optimal in a minimax sense are also proposed. The solutions often have a similar structure and can be computed simply and efficiently by digital filtering. Some concrete examples of reconstruction filters are presented, as well as simple guidelines for selecting the free parameters (e.g., regularization) of the various algorithms

Published in:

Signal Processing, IEEE Transactions on  (Volume:54 ,  Issue: 7 )