Cart (Loading....) | Create Account
Close category search window
 

Tracking of time-varying channels using two-step LMS-type adaptive algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kohli, A.K. ; Dept. of Electron. & Comput. Eng., Indian Inst. of Technol., Roorkee ; Mehra, D.K.

This paper presents a modified version of the two-step least-mean-square (LMS)-type adaptive algorithm motivated by the work of Gazor. We describe the nonstationary adaptation characteristics of this modified two-step LMS (MG-LMS) algorithm for the system identification problem. It ensures stable behavior during convergence as well as improved tracking performance in the smoothly time-varying environments. The estimated weight increment vector is used for the prediction of weight vector for the next iteration. The proposed modification includes the use of a control parameter to scale the estimated weight increment vector in addition to a smoothing parameter used in the two-step LMS (G-LMS) algorithm, which controls the initial oscillatory behavior of the algorithm. The analysis focuses on the effects of these parameters on the lag-misadjustment in the tracking process. The mathematical analysis for a nonstationary case, where the plant coefficients are assumed to follow a first-order Markov process, shows that the MG-LMS algorithm contributes less lag-misadjustment than the conventional LMS and G-LMS algorithms. Further, the stability criterion imposes upper bound on the value of the control parameter. These derived analytical results are verified and demonstrated with simulation examples, which clearly show that the lag-misadjustment reduces with increasing values of the smoothing and control parameters under permissible limits

Published in:

Signal Processing, IEEE Transactions on  (Volume:54 ,  Issue: 7 )

Date of Publication:

July 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.