Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Block-based frequency scalable technique for efficient hierarchical coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
4 Author(s)
Jooheung Lee ; Embedded & Mobile Comput. Design Center, Pennsylvania State Univ., University Park, PA ; Vijaykrishnan, N. ; Irwin, M.J. ; Chandramouli, R.

In this paper, we propose a block-based frequency scalable technique for efficient hierarchical coding. The proposed technique divides an image into its multiple resolution versions, based on the spectral properties of discrete cosine transform (DCT) kernels. We present that spectral decomposition, downsampling, and DCT operations are performed effectively over input DCT coefficients of one-dimensional (1-D) and two-dimensional (2-D) signals by using the proposed transform matrices. The proposed image coder is observed to reduce the computational complexity and the memory buffer size with a higher peak signal-to-noise ratio (PSNR), when compared with the traditional hierarchical image coder. In addition, the proposed architecture can preserve compatibility easily with the previous DCT-based image coder

Published in:

Signal Processing, IEEE Transactions on  (Volume:54 ,  Issue: 7 )