By Topic

Training-based and semiblind channel estimation for MIMO systems with maximum ratio transmission

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Murthy, C.R. ; Dept. of Electr. & Comput. Eng., Univ. of California, La Jolla, CA ; Jagannatham, A.K. ; Rao, B.D.

This paper is a comparative study of training-based and semiblind multiple-input multiple-output (MIMO) flat-fading channel estimation schemes when the transmitter employs maximum ratio transmission (MRT). We present two competing schemes for estimating the transmit and receive beamforming vectors of the channel matrix: a training-based conventional least-squares estimation (CLSE) scheme and a closed-form semiblind (CFSB) scheme that employs training followed by information-bearing spectrally white data symbols. Employing matrix perturbation theory, we develop expressions for the mean-square error (MSE) in the beamforming vector, the average received signal-to-noise ratio (SNR) and the symbol error rate (SER) performance of both the semiblind and the conventional schemes. Finally, we describe a weighted linear combiner of the CFSB and CLSE estimates for additional improvement in performance. The analytical results are verified through Monte Carlo simulations

Published in:

Signal Processing, IEEE Transactions on  (Volume:54 ,  Issue: 7 )