By Topic

Differential Petri net models for industrial automation and supervisory control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Demongodin, I. ; Ecole des Mines de Nantes ; Koussoulas, Nick T.

Supervisory control systems play a central role in modern industrial automation. However, control theory has recently made significant advances in modeling mixed continuous/discrete event systems ("hybrid control systems"), whose typical instantiations include the industrial supervisory controller. This article shows how differential Petri nets, a model for hybrid control systems, can be used to represent industrial supervisory systems in a unified way. Typical industrial automation tests can be modeled, whereas the effect of communication protocols and software can be straightforwardly included using conventional Petri nets. Therefore, a global model for the operation of an industrial control system can be formed and its behavior analyzed

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:36 ,  Issue: 4 )