By Topic

Volterra-system identification using adaptive real-coded genetic algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
H. M. Abbas ; Mentor Graphics Egypt, Ain Shams Univ., Cairo, Egypt ; M. M. Bayoumi

In this paper, a floating-point genetic algorithm (GA) for Volterra-system identification is presented. The adaptive GA method suggested here addresses the problem of determining the proper Volterra candidates, which leads to the smallest error between the identified nonlinear system and the Volterra model. This is achieved by using variable-length GA chromosomes, which encode the coefficients of the selected candidates. The algorithm relies on sorting all candidates according to their correlation with the output. A certain number of candidates with the highest correlation with the output are selected to undergo the first evolution "era". During the process of evolution the candidates with the least significant contribution in the error-reduction process is removed. Then, the next set of candidates are applied into the next era. The process continues until a solution is found. The proposed GA method handles the issues of detecting the proper Volterra candidates and calculating the associated coefficients as a nonseparable process. The fitness function employed by the algorithm prevents irrelevant candidates from taking part in the final solution. Genetic operators are chosen to suit the floating-point representation of the genetic data. As the evolution process improves and the method reaches a near-global solution, a local search is implicitly applied by zooming in on the search interval of each gene by adaptively changing the boundaries of those intervals. The proposed algorithms have produced excellent results in modeling different nonlinear systems with white and colored Gaussian inputs with/without white Gaussian measurement noise

Published in:

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans  (Volume:36 ,  Issue: 4 )