Cart (Loading....) | Create Account
Close category search window
 

Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Daoxin Dai ; Centre for Opt. & Electromagn. Res., Zhejiang Univ., Hangzhou, China ; Sailing He ; Hon-Ki Tsang

A bilevel mode converter is analyzed for providing low-loss coupling between the small fundamental mode of a silicon nanowire waveguide and the larger mode of a conventional silicon-on-insulator (SOI) rib waveguide. The bilevel converter can also be used to improve the coupling efficiency between a lensed fiber and a silicon nanowire waveguide. The mode converter consists of two tapers formed at different levels. The top taper comprises a parabolic and sine taper, which is optimized to improve the mode conversion efficiency. Numerical analyses are given by using a three-dimensional semivectorial beam propagation method. The design has good tolerance against misalignment of the two masks needed for the double etch.

Published in:

Lightwave Technology, Journal of  (Volume:24 ,  Issue: 6 )

Date of Publication:

June 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.