By Topic

Range image segmentation using surface selection criterion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bab-Hadiashar, A. ; Fac. of Eng. & Ind. Sci., Swinburne Univ. of Technol., Melbourne, Australia ; Gheissari, N.

In this paper, we address the problem of recovering the true underlying model of a surface while performing the segmentation. First, and in order to solve the model selection problem, we introduce a novel criterion, which is based on minimising strain energy of fitted surfaces. We then evaluate its performance and compare it with many other existing model selection techniques. Using this criterion, we then present a robust range data segmentation algorithm capable of segmenting complex objects with planar and curved surfaces. The presented algorithm simultaneously identifies the type (order and geometric shape) of each surface and separates all the points that are part of that surface. This paper includes the segmentation results of a large collection of range images obtained from objects with planar and curved surfaces. The resulting segmentation algorithm successfully segments various possible types of curved objects. More importantly, the new technique is capable of detecting the association between separated parts of a surface, which has the same Cartesian equation while segmenting a scene. This aspect is very useful in some industrial applications of range data analysis.

Published in:

Image Processing, IEEE Transactions on  (Volume:15 ,  Issue: 7 )