By Topic

Optimization of partition-based weighted sum filters and their application to image denoising

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Min Shao ; ZOLL Med. Corp., Chelmsford, MA, USA ; K. E. Barner

Partition-based Weighted Sum (P-WS) filtering is an effective method for processing nonstationary signals, especially those with regularly occurring structures, such as images. P-WS filters were originally formulated as Hard-partition Weighted Sum (HP-WS) filters and were successfully applied to image denoising. This formulation relied on intuitive arguments to generate the filter class. Here we present a statistical analysis that justifies the use of weighted sum filters after observation space partitioning. Unfortunately, the HP-WS filters are nondifferentiable and an analytical solution for their global optimization is therefore difficult to obtain. A two-stage suboptimal training procedure has been reported in the literature, but prior to this research no evaluation on the optimality of this approach has been reported. Here, a Genetic Algorithm (GA) HP-WS optimization procedure is developed that, in simulations, shows that the simpler two-stage training procedure yields near optimal results. Also developed in this paper are Soft-partition Weighted Sum (SP-WS) filters. The SP-WS filters utilize soft, or fuzzy, partitions that yield a differentiable filtering operation, enabling the development of gradient-based optimization procedures. Image denoising simulation results are presented comparing HP-WS and SP-WS filters, their optimization procedures, and wavelet-based image denoising. These results show that P-WS filters, in general, outperform traditional and wavelet-based image filters, and SP-WS filters utilizing soft partitioning not only allow for simple optimization, but also yields improved performance.

Published in:

IEEE Transactions on Image Processing  (Volume:15 ,  Issue: 7 )