Cart (Loading....) | Create Account
Close category search window

Musical instrument recognition by pairwise classification strategies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Essid, S. ; LTCI-CNRS, Paris ; Richard, G. ; David, B.

Musical instrument recognition is an important aspect of music information retrieval. In this paper, statistical pattern recognition techniques are utilized to tackle the problem in the context of solo musical phrases. Ten instrument classes from different instrument families are considered. A large sound database is collected from excerpts of musical phrases acquired from commercial recordings translating different instrument instances, performers, and recording conditions. More than 150 signal processing features are studied including new descriptors. Two feature selection techniques, inertia ratio maximization with feature space projection and genetic algorithms are considered in a class pairwise manner whereby the most relevant features are fetched for each instrument pair. For the classification task, experimental results are provided using Gaussian mixture models (GMMs) and support vector machines (SVMs). It is shown that higher recognition rates can be reached with pairwise optimized subsets of features in association with SVM classification using a radial basis function kernel

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:14 ,  Issue: 4 )

Date of Publication:

July 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.