Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

A fine granular scalable to lossless audio coder

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rongshan Yu ; Inst. for Infocomm Res. ; Rahardja, S. ; Lin Xiao ; Chi Chung Ko

This paper presents Advanced Audio Zip (AAZ), a fine grained scalable to lossless (SLS) audio coder that has recently been adopted as the reference model for MPEG-4 audio SLS work. AAZ integrates the functionalities of high-compression perceptual audio coding, fine granular scalable audio coding, and lossless audio coding in a single framework, and simultaneously provides backward compatibility to MPEG-4 Advanced Audio Coding (AAC). AAZ provides the fine granular bit-rate scalability from lossy to lossless coding, and such a scalability is achieved in a perceptually meaningful way, i.e., better perceptual quality at higher bit-rates. Despite its abundant functionalities, AAZ only introduces negligible overhead in terms of lossless compression performance compared with a nonscalable, lossless only audio coder. As a result, AAZ provides a universal yet efficient solution for digital audio applications such as audio archiving, network audio streaming, portable audio playing, and music downloading which were previously catered for by several different audio coding technologies, and eliminates the need for any transcoding system to facilitate sharing of digital audio contents across these application domains

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:14 ,  Issue: 4 )