By Topic

Gaussian mixture models with covariances or precisions in shared multiple subspaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dharanipragada, S. ; Citadel Investment Group, Chicago, IL ; Visweswariah, K.

We introduce a class of Gaussian mixture models (GMMs) in which the covariances or the precisions (inverse covariances) are restricted to lie in subspaces spanned by rank-one symmetric matrices. The rank-one basis are shared between the Gaussians according to a sharing structure. We describe an algorithm for estimating the parameters of the GMM in a maximum likelihood framework given a sharing structure. We employ these models for modeling the observations in the hidden-states of a hidden Markov model based speech recognition system. We show that this class of models provide improvement in accuracy and computational efficiency over well-known covariance modeling techniques such as classical factor analysis, shared factor analysis and maximum likelihood linear transformation based models which are special instances of this class of models. We also investigate different sharing mechanisms. We show that for the same number of parameters, modeling precisions leads to better performance when compared to modeling covariances. Modeling precisions also gives a distinct advantage in computational and memory requirements

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:14 ,  Issue: 4 )