Cart (Loading....) | Create Account
Close category search window
 

New insights into the noise reduction Wiener filter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jingdong Chen ; Lucent Technol. Bell Labs., Murray Hill, NJ ; Benesty, J. ; Yiteng Huang ; Doclo, S.

The problem of noise reduction has attracted a considerable amount of research attention over the past several decades. Among the numerous techniques that were developed, the optimal Wiener filter can be considered as one of the most fundamental noise reduction approaches, which has been delineated in different forms and adopted in various applications. Although it is not a secret that the Wiener filter may cause some detrimental effects to the speech signal (appreciable or even significant degradation in quality or intelligibility), few efforts have been reported to show the inherent relationship between noise reduction and speech distortion. By defining a speech-distortion index to measure the degree to which the speech signal is deformed and two noise-reduction factors to quantify the amount of noise being attenuated, this paper studies the quantitative performance behavior of the Wiener filter in the context of noise reduction. We show that in the single-channel case the a posteriori signal-to-noise ratio (SNR) (defined after the Wiener filter) is greater than or equal to the a priori SNR (defined before the Wiener filter), indicating that the Wiener filter is always able to achieve noise reduction. However, the amount of noise reduction is in general proportional to the amount of speech degradation. This may seem discouraging as we always expect an algorithm to have maximal noise reduction without much speech distortion. Fortunately, we show that speech distortion can be better managed in three different ways. If we have some a priori knowledge (such as the linear prediction coefficients) of the clean speech signal, this a priori knowledge can be exploited to achieve noise reduction while maintaining a low level of speech distortion. When no a priori knowledge is available, we can still achieve a better control of noise reduction and speech distortion by properly manipulating the Wiener filter, resulting in a suboptimal Wiener filter. In case that we have multi- - ple microphone sensors, the multiple observations of the speech signal can be used to reduce noise with less or even no speech distortion

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:14 ,  Issue: 4 )

Date of Publication:

July 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.