By Topic

Voice conversion using duration-embedded bi-HMMs for expressive speech synthesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chung-Hsien Wu ; Dept. of Comput. Sci. & Inf. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Chi-Chun Hsia ; Te-Hsien Liu ; Jhing-Fa Wang

This paper presents an expressive voice conversion model (DeBi-HMM) as the post processing of a text-to-speech (TTS) system for expressive speech synthesis. DeBi-HMM is named for its duration-embedded characteristic of the two HMMs for modeling the source and target speech signals, respectively. Joint estimation of source and target HMMs is exploited for spectrum conversion from neutral to expressive speech. Gamma distribution is embedded as the duration model for each state in source and target HMMs. The expressive style-dependent decision trees achieve prosodic conversion. The STRAIGHT algorithm is adopted for the analysis and synthesis process. A set of small-sized speech databases for each expressive style is designed and collected to train the DeBi-HMM voice conversion models. Several experiments with statistical hypothesis testing are conducted to evaluate the quality of synthetic speech as perceived by human subjects. Compared with previous voice conversion methods, the proposed method exhibits encouraging potential in expressive speech synthesis

Published in:

IEEE Transactions on Audio, Speech, and Language Processing  (Volume:14 ,  Issue: 4 )