By Topic

Compact fixed and tune-all bandpass filters based on coupled slow-wave resonators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Pistono, E. ; Lab. d''Hyperfrequences et de Caracterisation, Univ. de Savoie, Le Bourget-Du-Lac ; Robert, M. ; Duvillaret, L. ; Duchamp, J.
more authors

A compact topology for bandpass filters based on coupled slow-wave resonators is demonstrated. A study of fixed bandpass filters leads to design rules and equations. Measurements on a 0.7-GHz fixed bandpass filter, consisting of three coupled slow-wave resonators, demonstrate the validity of the proposed topology and validate the theory, since the agreement between simulations and measurements is very good. Designed for a Q-factor of 5, this filter shows a Q of approximately 5.2. At the center frequency, insertion loss is 0.6 dB and return loss is greater than 20 dB. A 0.7-GHz tune-all bandpass filter is also designed and tested. The performance of this electronically tuned filter, which incorporates semiconductor varactors, is promising in terms of wide continuous center-frequency and bandwidth tunings. For a center-frequency tuning of plusmn18% around 0.7 GHz, the -3-dB bandwidth can be simultaneously tuned between ~50 and ~78 MHz, with an insertion loss smaller than 5 dB and a return loss greater than 13 dB at the center frequency. The surface areas of the fixed and tunable 0.7-GHz filters are, respectively, ~16 and ~20 cm2

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:54 ,  Issue: 6 )