Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Distributed MEMS tunable matching network using minimal-contact RF-MEMS varactors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Qin Shen ; Charles L. Brown Dept. of Electr. & Comput. Eng., Virginia Univ., Charlottesville, VA ; Barker, N.S.

This paper presents the design, fabrication, and measurement of a double-slug tunable matching network based on a distributed microelectromechanical-system (MEMS) transmission line. The tuner is implemented with a new minimal-contact RF-MEMS varactor that largely eliminates stiction while allowing the capacitance ratio to be set anywhere from 2 to 5. The measured performance of the tunable matching network demonstrates complete coverage of the Smith chart out to a maximum voltage standing-wave ratio of 12:1 from 10 to 30 GHz with excellent agreement between measurement and simulation results

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:54 ,  Issue: 6 )