By Topic

Optimal periodic training signal for frequency offset estimation in frequency-selective fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hlaing Minn ; Dept. of Electr. Eng., Texas Univ., Richardson, TX, USA ; Xiaoyu Fu ; V. K. Bhargava

This paper addresses an optimal periodic training signal design for frequency offset estimation in frequency-selective multipath Rayleigh fading channels. For a fixed transmitted training signal energy within a fixed-length block, the optimal periodic training signal structure (the optimal locations of identical training subblocks) and the optimal training subblock signal are presented. The optimality is based on the minimum Cramer-Rao bound (CRB) criterion. Based on the CRB for joint estimation of frequency offset and channel, the optimal periodic training structure (optimality only in frequency offset estimation, not necessarily in joint frequency offset and channel estimation) is derived. The optimal training subblock signal is obtained by using the average CRB (averaged over the channel fading) and the received training signal statistics. A robust training structure design is also presented in order to reduce the occurrence of outliers at low signal-to-noise ratio values. The proposed training structures and subblock signals achieve substantial performance improvement

Published in:

IEEE Transactions on Communications  (Volume:54 ,  Issue: 6 )