By Topic

Generalized predictive control based on self-recurrent wavelet neural network for stable path tracking of mobile robots: adaptive learning rates approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sung Jin Yoo ; Dept. of Electron. Eng., Yonsei Univ., Seoul, South Korea ; Yoon Ho Choi ; Jin Bae Park

In this paper, a generalized predictive control (GPC) method based on self-recurrent wavelet neural network (SRWNN) is proposed for stable path tracking of mobile robots. Since the SRWNN has a self-recurrent mother wavelet layer, it can well attract the complex nonlinear system although the SRWNN has less mother wavelet nodes than the wavelet neural network. Thus, the SRWNN is used as a model identifier for approximating on-line the states of the mobile robot. In our control system, since the control inputs, as well as the parameters of the SRWNN identifier are trained by the gradient descent method with the adaptive learning rates (ALRs), the optimal learning rates which are suitable for the time-varying trajectory of the mobile robot can be found rapidly. The ALRs for training the parameters of the SRWNN identifier and those for learning the control inputs are derived from the discrete Lyapunov stability theorem, which are used to guarantee the convergence of the GPC system. Finally, simulation results are provided to demonstrate the effectiveness of the proposed control strategy

Published in:

IEEE Transactions on Circuits and Systems I: Regular Papers  (Volume:53 ,  Issue: 6 )