Cart (Loading....) | Create Account
Close category search window
 

Design of signed powers-of-two coefficient perfect reconstruction QMF Bank using CORDIC algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sang Yoon Park ; Sch. of Electr. Eng. & Comput. Sci., Seoul ; Nam Ik Cho

Lattice structures have several advantages over the tapped delay line form, especially for the hardware implementation of general digital filters. It is also efficient for the implementation of quadrature mirror filter (QMF), because the perfect reconstruction is preserved under the coefficient quantization. Moreover, if lattice coefficients are implemented in signed powers-of-two (SPT), the hardware complexity can also be reduced. But the discrete coefficient space with the SPT representation is sparse when the number of nonzero bits is small. This paper proposes a structure of orthogonal QMF lattice with SPT coefficients, which has much denser discrete coefficient space than the conventional structure. While the conventional approaches directly quantize the lattice coefficients into SPT form, the proposed algorithm considers the quantization in the SPT angle space. For this, each lattice stage is implemented by the cascade of several variants of COordinate Rotation DIgital Computer. The resulting angle space and corresponding discrete coefficient space is much denser than the one generated by the conventional direct quantization approach. An efficient coefficient search algorithm for this structure is also proposed. Since the proposed architecture provides denser coefficient space, it shows less coefficient quantization error than the conventional QMF lattice

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:53 ,  Issue: 6 )

Date of Publication:

June 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.