By Topic

H control for discrete-time nonlinear stochastic systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Berman, N. ; Dept. of Mech. Eng., Ben-Gurion Univ. of the Negev, Beer-Sheva, Israel ; Shaked, U.

In this note, we develop an H-type theory for a large class of discrete-time nonlinear stochastic systems. In particular, we establish a bounded real lemma (BRL) for this case. We introduce the notion of stochastic dissipative systems, analogously to the familiar notion of dissipation associated with deterministic systems, and utilize it in the derivation of the BRL. In particular, this BRL establishes a necessary and sufficient condition, in terms of a certain Hamilton Jacobi inequality (HJI), for a discrete-time nonlinear stochastic system to have l2-gain≤γ. The time-invariant case is also considered as a special case. In this case, the BRL guarantees necessary and sufficient conditions for the system to have l2-gain≤γ, by means of a solution to a certain algebraic HJI. An application of this theory to a special class of systems which is a characteristic of numerous physical systems, yields a more tractable HJI which serves as a sufficient condition for the underlying system to possess l2-gain≤γ. Stability in both the mean square sense and in probability, is also discussed. Systems that possess a special structure (norm-bounded) of uncertainties in their model are considered. Application of the BRL to this class of systems yields a linear state-feedback stabilizing controller which achieves l2-gain≤γ, by means of certain linear matrix inequalities (LMIs).

Published in:

Automatic Control, IEEE Transactions on  (Volume:51 ,  Issue: 6 )