By Topic

Hamiltonian map description of electron dynamics in gyrotrons

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Dumbrajs, O. ; Dept. of Eng. Phys. & Math, Helsinki Univ. of Technol., Espoo ; Kominis, Y. ; Avramides, K.A. ; Hizanidis, Kyriakos
more authors

Electron dynamics in gyrotron resonators are described in terms of a Hamiltonian map. This map incorporates the dependency of electron dynamics on the parameters of the interacting radio-frequency (RF) field and it can be used for trajectory calculations through successive iteration, resulting in a symplectic integration scheme. The direct relation of the map to the physics of the model, along with its canonical form (phase space volume preserving) and the significant reduction of the number of iteration steps required for acceptable accuracy, are the main advantages of this method in comparison with standard methods such as Runge-Kutta. The general form of the Hamiltonian map allows for wide applications as a part of several numerical algorithms which incorporate CPU-consuming electron trajectories calculations

Published in:

Plasma Science, IEEE Transactions on  (Volume:34 ,  Issue: 3 )