By Topic

Radio frequency priming of a long-pulse relativistic magnetron

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)

Rapid startup, increased pulsewidth, and mode locking of magnetrons have been explored experimentally on a relativistic magnetron by radio frequency (RF) priming. Experiments utilize a -300 kV, 2-8 kA, 300-500-ns electron beam to drive a Titan six-vane relativistic magnetron (5-100 MW output power in each of the three waveguides). The RF priming source is a 100-kW pulsed magnetron operating at 1.27-1.32 GHz. Tuning stubs are utilized in the Titan structure to adjust the frequency of the relativistic magnetron to match that of the priming source. Experiments are performed on rising sun as well as standard anode configurations. Magnetron start-oscillation time, pulsewidth, and pi-mode locking are compared with RF priming versus the unprimed case. The results show significant reductions in microwave output delay and mode competition even when Adler's Relation is not satisfied

Published in:

Plasma Science, IEEE Transactions on  (Volume:34 ,  Issue: 3 )