By Topic

Design of a ka-band second harmonic gyroklystron amplifier by using a self-consistent nonlinear simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhi-Hui Geng ; Inst. of Electron., Chinese Acad. of Sci., Beijing ; Pu-Kun Liu

The self-consistent nonlinear simulation of a Ka-band, second harmonic two-stage gyroklystron amplifier is presented in this paper. The beam-wave interaction in the gyroklystron is studied by using a self-consistent nonlinear simulation code GKLSC, and the electron bunching pictures of the different positions in phase space are demonstrated in detail. The effects of various parameters, such as drift tube length, input power, frequency, velocity ratio, guiding center radius, magnetic field strength, velocity spread and beam current on the electronic efficiency, gain, and output power are discussed. The simulated results show that the designed gyroklystron amplifier can obtain about 21% electronic efficiency, 43 dB gain, and 0.6% bandwidth, respectively. The performance of the designs is also confirmed by a particle-in-cell code

Published in:

Plasma Science, IEEE Transactions on  (Volume:34 ,  Issue: 3 )