By Topic

Voltage Rating Reduction of Magnet Power Supplies Using a Magnetic Energy Recovery Switch

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
T. Isobe ; Res. Lab. for Nucl. Reactors, Tokyo Inst. of Technol. ; T. Takaku ; T. Munakata ; H. Tsutsui
more authors

A new concept of magnet power supplies that can reduce voltage ratings of the power supplies is proposed. Circuit diagram and operation principles of magnetic energy recovery switch (MERS) are described. MERS consists of a capacitor and four semi-conductor devices such as MOSFETs and IGBTs. It is connected in series to a power supply and a coil. MERS is a switch module and it has no power supply in itself. Because MERS generates a voltage required for the inductance of the coil, the power supply only has to supply a voltage required for the resistance of the coil. Therefore, using MERS can reduce voltage rating and capacity of the power supply. Two types of power supply using MERS and voltage rating reduction are discussed. Comparatively small power supplies for high-repetition pulsed magnets and alternating magnetic field coils can be designed. Some experiments were carried out and confirmed that MERS can reduce voltage ratings of power supplies

Published in:

IEEE Transactions on Applied Superconductivity  (Volume:16 ,  Issue: 2 )