Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Transient Perturbation to Permanent Magnetic Field by Gradient Pulses in MRI Magnets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Sivasubramaniam, K. ; Gen. Electr. Global Res. Center, Niskayuna, NY ; Xu, M. ; Huang, X. ; Barber, W.
more authors

Open MRI magnets are generally designed with ferromagnetic poles to contain and shape the magnetic flux and to reduce conductor cost. Permanent magnet MR magnets have blocks of PM and bulk ferromagnetic materials on or close to the pole face. These electrically conducting regions are sources of eddy currents that affect the image quality because of their relatively long time constants and close proximity to the imaging volume. The impact on image quality can be minimized by appropriate segmentation and/or lamination of these components. Detailed eddy current diffusion models are necessary to quantify the field distortion and time constants of the resulting field to perform design studies. The three dimensional frequency or time domain models required to accurately predict effects of eddy currents due to gradient fields are not computationally economical. This paper describes modeling of a PM imaging system using simplified 2D models with appropriate assumptions to evaluate the impact of these eddy currents. Experimental validation of some of the results with a prototype magnet is provided

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:16 ,  Issue: 2 )