By Topic

Three Dimensional Motion Control System of Ferromagnetic Particles for Magnetically Targeted Drug Delivery Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mishima, F. ; Div. of Sustainable Energy & Environ. Eng., Osaka Univ. ; Shin-Ichi Takeda ; Izumi, Y. ; Nishijima, S.

The development of a 3-dimensional (3-D) navigation system of ferromagnetic particles in a flow system was performed. In order to improve the practice of using externally-applied magnetic fields for targeting the magnetic particles to a circumscribed body region, we tested the feasibility of a novel 3-D navigation system, made by applying a strong external (magnetic) field through a GdBaCuO bulk superconductor. A 3-D theoretical model is proposed and used in order to evaluate the efficiency of the navigation/retention of magnetic particles in the flow system. Furthermore, an experimental model system was made and the efficiency of a prototype system was examined. Comparisons of experimental and the corresponding calculation results were made to examine the theoretical model system

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:16 ,  Issue: 2 )