Cart (Loading....) | Create Account
Close category search window

Fabrication and Characteristics of HTS Induction Motor by the Use of Bi-2223/Ag Squirrel-Cage Rotor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

HTS squirrel-cage induction motor was fabricated and tested in this study. Both of rotor bars and end rings were made of Bi-2223/Ag multifilamentary tapes in order to realize superconducting current loops, and the conventional (normal conducting) stator, 3-phase and 4-pole, was utilized. Rotating characteristics of the fabricated motor were tested for different input voltages at 60 Hz. The performances were also analyzed by means of the theoretical method based on the electrical equivalent circuit. It was shown that the minimum starting voltage was experimentally confirmed and agreed semi-quantitatively with the analysis result. The rotation at synchronous speed was realized by applying the load, at least, 1.5 Nm

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:16 ,  Issue: 2 )

Date of Publication:

June 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.