By Topic

Superconducting Properties of \rm Sn Added RHQT- \rm Nb_3\rm Al Wires Through the Clad-Chip Extrusion Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Saito, S. ; Ashikaga Inst. of Technol. ; Kodaira, N. ; Kikuchi, A. ; Iijima, Y.
more authors

Fabrication and superconducting properties of Sn added Nb3 Al wires are presented. The wire fabrication process consists of the clad-chip extrusion (CCE) method and the rapid-heating, quenching, and transformation (RHQT) treatment. The former (CCE) is a metal-composite fabrication method and characterized by the extrusion of thin chips of Nb/Al clad-rolled sheet. It can produce the Sn-adding Nb/Al microcomposite precursor with the intended chemical composition. The latter (RHQT) is a heat-treatment method to transform the precursor to the Nb3Al wire by way of the bcc-structured supersaturated solid solution, Nb(Al)ss. It can produce not only the nearly stoichiometric composition but also fine grain of Nb3Al, which is favorable for upgrading the superconducting properties. The combined process of the CCE method and the RHQT treatment successfully fabricated the Sn added Nb3Al wires with Sn-addition from 0.25 to 5 atomic percent (at%). Sn-addition to Nb/Al composite wires affected the phase transformation at RHQT treatment. With increasing Sn-addition, the Nb(Al)ss became unstable and A15 phase was dominant at the stage of rapid-heating and quenching. The RHQT-treated Nb3Al wire with nearly 2 at% Sn-addition showed the maximum transition temperature Tc but the more addition decreased Tc. The small Sn-addition within 2 at% improved both of the critical field and the critical current density, although the more addition decreased them drastically

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:16 ,  Issue: 2 )