Cart (Loading....) | Create Account
Close category search window
 

Numerical Study on AC Loss Characteristics of HTS Coils With Various Cross Sections and Methods of AC Loss Reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Fukui, S. ; Graduate Sch. of Sci. & Technol., Niigata Univ. ; Nishijyo, T. ; Abe, S. ; Ogawa, J.
more authors

AC loss characteristics of high temperature superconducting coils wound by Bi2223/Ag tape with various cross sections are numerically investigated. The numerical results show that the smaller coil aspect ratio, the smaller AC losses in the HTS coil. It was considered from the numerical results that the coil aspect ratio giving the minimum coil volume is the better shape judging from the many aspects such as the required length of tape, the stored energy, the central magnetic field and the critical current together with the AC loss. It was also shown by the numerical study that the optimal coil design giving the reduced AC loss can be done by employing the stepped cross section coil and the turn number graded coil

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:16 ,  Issue: 2 )

Date of Publication:

June 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.