By Topic

Incremental service deployment using the hop-by-hop multicast routing protocol

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
L. H. M. K. Costa ; Univ. Fed. do Rio de Janeiro, Brazil ; S. Fdida ; O. C. M. B. Duarte

IP multicast is facing a slow take-off although it has been a hotly debated topic for more than a decade. Many reasons are responsible for this status. Hence, the Internet is likely to be organized with both unicast and multicast enabled networks. Thus, it is of utmost importance to design protocols that allow the progressive deployment of the multicast service by supporting unicast clouds. This paper presents HBH (hop-by-hop multicast routing protocol). HBH adopts the source-specific channel abstraction to simplify address allocation and implements data distribution using recursive unicast trees, which allow the transparent support of unicast-only routers. An important original feature of HBH is its tree construction algorithm that takes into account the unicast routing asymmetries. Since most multicast routing protocols rely on the unicast infrastructure, the unicast asymmetries impact the structure of the multicast trees. We show through simulation that HBH outperforms other multicast routing protocols in terms of the delay experienced by the receivers and the bandwidth consumption of the multicast trees. Additionally, we show that HBH can be incrementally deployed and that with a small fraction of HBH-enabled routers in the network HBH outperforms application-layer multicast

Published in:

IEEE/ACM Transactions on Networking  (Volume:14 ,  Issue: 3 )