By Topic

Lattice networks: capacity limits, optimal routing, and queueing behavior

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Barrenetxea, G. ; Sch. of Comput. Sci. & Communi., Ecole Polytech. Fed. de Lausanne ; Berefull-Lozano, B. ; Vetterli, M.

Lattice networks are widely used in regular settings like grid computing, distributed control, satellite constellations, and sensor networks. Thus, limits on capacity, optimal routing policies, and performance with finite buffers are key issues and are addressed in this paper. In particular, we study the routing algorithms that achieve the maximum rate per node for infinite and finite buffers in the nodes and different communication models, namely uniform communications, central data gathering and border data gathering. In the case of nodes with infinite buffers, we determine the capacity of the network and we characterize the set of optimal routing algorithms that achieve capacity. In the case of nodes with finite buffers, we approximate the queue network problem and obtain the distribution on the queue size at the nodes. This distribution allows us to study the effect of routing on the queue distribution and derive the algorithms that achieve the maximum rate

Published in:

Networking, IEEE/ACM Transactions on  (Volume:14 ,  Issue: 3 )