By Topic

Design considerations for complementary inchworm actuators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Salisbury, S.P. ; Dept. of Mech. & Ind. Eng., Toronto Univ., Canada ; Waechter, D.F. ; Mrad, R.B. ; Eswar Prasad, S.
more authors

An inchworm actuator is described, which uses complementary configurations for the two clamping sections. In one configuration, clamping and release are achieved using high and low voltages, respectively, while for the other, clamping and release are achieved using low and high voltages, respectively. The resulting inchworm actuator can be driven by a two-channel controller with the two clamps sharing the first channel and the extender piezoelectric actuator using the second channel. The paper also describes a diode-shunted delay circuit that causes unclamping to occur more slowly than clamping. It is shown that by using the delay circuit in series with each clamp, the overall force drive capability of the actuator is increased. The paper presents simulated and experimental results of clamp force versus time during the switching transient. An analysis of a generalized delay circuit having both resistive and reactive elements shows that a purely resistive design provides the better tradeoff between increased force drive capability and power loss in the delay circuit.

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:11 ,  Issue: 3 )