By Topic

Dynamical statistical shape priors for level set-based tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Cremers, D. ; Dept. of Comput. Sci., Bonn Univ.

In recent years, researchers have proposed introducing statistical shape knowledge into level set-based segmentation methods in order to cope with insufficient low-level information. While these priors were shown to drastically improve the segmentation of familiar objects, so far the focus has been on statistical shape priors which are static in time. Yet, in the context of tracking deformable objects, it is clear that certain silhouettes (such as those of a walking person) may become more or less likely over time. In this paper, we tackle the challenge of learning dynamical statistical models for implicitly represented shapes. We show how these can be integrated as dynamical shape priors in a Bayesian framework for level set-based image sequence segmentation. We assess the effect of such shape priors "with memory" on the tracking of familiar deformable objects in the presence of noise and occlusion. We show comparisons between dynamical and static shape priors, between models of pure deformation and joint models of deformation and transformation, and we quantitatively evaluate the segmentation accuracy as a function of the noise level and of the camera frame rate. Our experiments demonstrate that level set-based segmentation and tracking can be strongly improved by exploiting the temporal correlations among consecutive silhouettes which characterize deforming shapes

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:28 ,  Issue: 8 )