By Topic

Confidence-based active learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mingkun Li ; DOE Joint Genome Inst., Lawrence Berkeley Nat. Lab., Walnut Creek, CA ; Sethi, I.K.

This paper proposes a new active learning approach, confidence-based active learning, for training a wide range of classifiers. This approach is based on identifying and annotating uncertain samples. The uncertainty value of each sample is measured by its conditional error. The approach takes advantage of current classifiers' probability preserving and ordering properties. It calibrates the output scores of classifiers to conditional error. Thus, it can estimate the uncertainty value for each input sample according to its output score from a classifier and select only samples with uncertainty value above a user-defined threshold. Even though we cannot guarantee the optimality of the proposed approach, we find it to provide good performance. Compared with existing methods, this approach is robust without additional computational effort. A new active learning method for support vector machines (SVMs) is implemented following this approach. A dynamic bin width allocation method is proposed to accurately estimate sample conditional error and this method adapts to the underlying probabilities. The effectiveness of the proposed approach is demonstrated using synthetic and real data sets and its performance is compared with the widely used least certain active learning method

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:28 ,  Issue: 8 )