Cart (Loading....) | Create Account
Close category search window
 

Learning nonlinear image manifolds by global alignment of local linear models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Verbeek, J. ; GRAVIR-INRIA, Montbonnot

Appearance-based methods, based on statistical models of the pixel values in an image (region) rather than geometrical object models, are increasingly popular in computer vision. In many applications, the number of degrees of freedom (DOF) in the image generating process is much lower than the number of pixels in the image. If there is a smooth function that maps the DOF to the pixel values, then the images are confined to a low-dimensional manifold embedded in the image space. We propose a method based on probabilistic mixtures of factor analyzers to 1) model the density of images sampled from such manifolds and 2) recover global parameterizations of the manifold. A globally nonlinear probabilistic two-way mapping between coordinates on the manifold and images is obtained by combining several, locally valid, linear mappings. We propose a parameter estimation scheme that improves upon an existing scheme and experimentally compare the presented approach to self-organizing maps, generative topographic mapping, and mixtures of factor analyzers. In addition, we show that the approach also applies to finding mappings between different embeddings of the same manifold

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:28 ,  Issue: 8 )

Date of Publication:

Aug. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.