Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Self-stabilizing distributed queuing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tirthapura, S. ; Dept. of Electr. & Comput. Eng., Iowa State Univ., Ames, IA ; Herlihy, M.

Distributed queuing is a fundamental coordination problem arising in a variety of applications, including distributed shared memory, distributed directories, and totally ordered multicast. A distributed queue can be used to order events, user operations, or messages in a distributed system. This paper presents a new self-stabilizing distributed queuing protocol. This protocol adds self-stabilizing actions to the arrow distributed queuing protocol, a simple path-reversal protocol that runs on a spanning tree of the network. We present a proof that the protocol stabilizes to a stable state irrespective of the (perhaps faulty) initial state, and also present an analysis of the time until convergence. The self-stabilizing queuing protocol is structured as a layer that runs on top of any self-stabilizing spanning tree protocol. This additional queuing layer is guaranteed to stabilize in time bounded by a constant number of message delays across an edge, thus establishing that the stabilization time for distributed queuing is not much more than the stabilization time for spanning tree maintenance. The key idea in our protocol is that the global predicate defining the legality of a protocol state can be written as the conjunction of many purely local predicates, one for each edge of the spanning tree

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:17 ,  Issue: 7 )